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Flow effects on jet profiles and multiplicities
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Abstract. We study the effects of low-pT collective flow on radiative energy loss from high-pT partons
traversing the QCD medium created in high-energy nucleus–nucleus collisions. We illustrate this idea
through three examples. Due to longitudinal flow, jet profiles at the LHC present marked asymmetries in
the η × φ-plane, and widths in η and φ of particle distributions associated with a high-pT trigger at RHIC
become different. Finally, transverse flow implies an increase of high-pT v2 at RHIC.

PACS. 25.75.Ld – 24.85.+p – 25.75.Gz

1 Motivation and formalism

Low transverse momentum inclusive spectra and az-
imuthal correlations measured in Au + Au collisions at
the Relativistic Heavy Ion Collider (RHIC) indicate that
different hadron species emerge from a common medium
which has built up a strong collective velocity field [1–4].
These measurements are broadly consistent with calcula-
tions based on ideal hydrodynamics, whose success is re-
garded as strong evidence [5] that the medium produced
in nucleus–nucleus collisions has a very small mean free
path, shows a very rapid thermalization at a time less
than 1 fm/c after initial impact, and behaves like an al-
most ideal fluid with vanishing viscosity. This suggests
strong position–momentum correlations in the medium.
In this contribution we explore possible effects of this col-
lective flow on high-pT observables [6,7].

At collider energies, the production of high-pT hadrons
and jets provides a novel independent characterization of
the produced medium. This is so since the gluon radia-
tion off parent partons is sensitive to the interaction be-
tween the partonic projectile and the medium; see the re-
views in [8–12]. The radiative energy loss of a fast parton
traversing a QCD medium is determined by momentum
exchanges perpendicular to the trajectory of the parton.
Thus, if the hard parton (jet) is produced in a frame not
co-moving with the collective flow, momentum exchanges
become anisotropic and an additional contribution to en-
ergy loss comes from flow; see Fig. 1.

At a given energy density ε, the dynamic behavior of
the medium is fully specified by its equation of state (EOS)
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Fig. 1. Sketch of the radiation from a fast parton travers-
ing the vacuum (left), a static medium (center) and a flowing
medium (right)

p = p(T, µB) which enters the energy momentum tensor

Tµν(x) = (ε + p) uµ uν − p gµν . (1)

Here, uµ = γ(1,β) is the flow velocity field.
On the other hand, quenched high-pT hadroproduc-

tion is sensitive to the transport coefficient q̂, which is
proportional to the density of scattering centers and char-
acterizes the squared average momentum transfer from
the medium to the hard parton per unit path length. This
transport coefficient is related to ε [13], q̂

[
GeV2/fm

]
=

c ε3/4
[
(GeV/fm3)3/4

]
. Here, c is a proportionality con-

stant of order unity [13,14].
In order to take into account the effect of the

anisotropy in momentum exchanges due to the presence
of flow on radiative energy loss, we modify the Yukawa-
like scattering potential usually employed to model the
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medium [15],

|a(q)|2 =
µ2

π [(q − q0)2 + µ2]2
. (2)

The Debye screening mass µ is usually taken to be pro-
portional to a power of the energy density ε1/4, while
the directed momentum component q0 is assumed to
come from the additional contribution to T ii given by
∆p = (ε + p)ui ui(= 4 p γ2β2 for an ideal EOS ε = 3 p).
This implies, for rapidity differences η = 0.5, 1.0, 1.5 be-
tween the frame co-moving with the hard parton and the
frame co-moving with the collective flow, ∆p/p � 1, 5, 18.
So this naive estimation shows that such directed com-
ponent may be |q0| ∼ µ. Let us indicate that we do not
address in this contribution the dynamical dilution of the
medium. It can be taken into account by a redefinition
of the (time-dependent) transport coefficient as shown in
[16–18].

We have calculated the medium-induced radiation of
gluons with energy ω and transverse momentum k, emit-
ted from a highly energetic parton that propagates over a
finite path length L in a medium of density n0 with col-
lective motion. To first order in opacity, we find [19–21]

ω
dImed

dω dk
=

αs

(2π)2
4 CR n0

ω

∫
dq |a(q)|2 k · q

k2

×
−L (k+q)2

2ω + sin
(
L (k+q)2

2ω

)

[(k + q)2/2ω]2
. (3)

In the absence of a medium, the parton fragments accord-
ing to the vacuum distribution Itot = Ivac. The radia-
tion spectrum (3) characterizes the medium modification
of this distribution ω dItot

dω dk = ω dIvac

dω dk + ω dImed

dω dk in the so-
called single hard scattering approximation [19–21]. Phys-
ically equivalent results are obtained in the multiple soft
scattering approximation [22], as explained in [21].

From ω dItot

dω dk , we calculate distortions of jet energy and
jet multiplicity distributions [23].

2 Exercises

To illustrate the effects of flow on high-pT observables and
the information about the medium that can be extracted
from such measurements, we perform three exercises: We
examine jet shapes at the Large Hadron Collider (LHC)
[6,7] in Sect. 2.1, widths of particle distributions at RHIC
[6] in Sect. 2.2 and, in Sect. 2.3, high-pT elliptic flow at
RHIC [7].

2.1 LHC: jet shapes

From ω dItot

dω dk , we calculate distortions of jet energy and
jet multiplicity distributions [23]. Information about Ivac

is obtained from the energy fraction of the jet contained
in a subcone of radius R =

√
η2 + φ2, ρvac(R). For this jet
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Fig. 2. Calculated distortion of the jet energy distribution in
the η ×φ-plane for a 100 GeV jet. The right hand-side is for an
average medium-induced radiated energy of 23 GeV and equal
contributions from density and flow effects, µ = q0

shape, we use the parametrization [24] of the Fermilab D0
Collaboration for jet energies in the range ≈ 50 < Et <
150 GeV and opening cones 0.1 < R < 1.0, modified as
explained in [6,7]. We then calculate from (3) the modi-
fication [23] of ρvac(R) caused by the energy density and
collective flow of the medium. To do so, we transform the
gluon emission angle arcsin (k/ω) in (3) to jet coordinates
η, φ, k dk dα = ω2 cos φ

cosh3 η
dη dφ where α denotes the an-

gle between the transverse gluon momentum k and the
collective flow component q0.

In Fig. 2, we show the medium-modified jet shape for
a jet of total energy ET = 100 GeV. To test the sensitivity
of this energy distribution to collective flow, we have cho-
sen a rather small directed flow component, q0 = µ. The
parameters in (3) were adjusted [6,7] such that an average
energy ∆ET =

∫
dωω dImed

dω = 23 GeV is redistributed by
medium-induced gluon radiation. This is a conservative
estimate for Pb + Pb collisions at the LHC and implies a
shift of the calorimetric jet center of 0.04 rapidity units [7].
Both the broadening in the jet structure due to medium-
induced Brownian motion of the partonic jet fragments
in a dense medium [21] and a marked rotational asym-
metry in the η × φ-plane characteristic of the presence of
a collective flow field can be observed. While the jet en-
ergy contours shown in Fig. 2 may not be easy to observe,
the difference in widths in the different directions in the
η × φ-plane should be clearly visible [6,7].

2.2 RHIC: widths of particle distributions

The calculation of medium-induced gluon radiation is
most reliable for calorimetric measurements, but it also
provides a framework for the discussion of medium-
modified multiplicity distributions [6,7,23]. At RHIC
calorimetric measurements are not currently performed,
and the present discussion is on particle distributions as-
sociated to high-pT triggers [25–27]. We have compared
our calculation to data of the STAR Collaboration [25,26],
which measured the widths of the η- and φ-distributions of
produced hadrons associated to trigger particles of trans-
verse momentum 4 GeV < pT < 6 GeV. As a function
of centrality of the collision, the φ-distribution does not
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Fig. 3. The width in azimuth and rapidity of the near-side
distribution of charged hadrons associated to high-pT trigger
particles of transverse momentum 4 GeV < pT < 6 GeV in
Au + Au collisions at

√
sNN = 200 GeV. Black points are pre-

liminary data from the STAR collaboration [25]. The band rep-
resents our calculation for longitudinal flow fields in the range
2 < q0/µ < 4; see the text for further details

change within errors, while the η-distribution shows a sig-
nificant broadening; see Fig. 3. Although these data are
still preliminary, they allow us to illustrate the strategy
of determining collective flow effects from jet asymme-
tries. To this end, we have first used the width of the
jet-like correlation in p + p collisions to characterize the
vacuum contribution. The energy of the parent parton
was fixed to 10 GeV. We have chosen a rather small in-
medium path length L = 2 fm to account for the fact
that high-pT trigger particles tend to correspond to par-
ent partons produced near the surface. We then calculated
the asymmetry of the broadening in ∆η and ∆φ by vary-
ing the average momentum transfer between µ = 0.7 and
µ = 1.4 GeV, and the size of the collective flow compo-
nent between q0/µ = 2 and q0/µ = 4. The results thus
obtained for central Au + Au collisions were extrapolated
to peripheral ones by a straight line and are represented
by the band in Fig. 3. Numerical uncertainties in apply-
ing calculations of parton energy loss to transverse hadron
momenta pT < 10 GeV are significant and have been dis-
cussed repeatedly [21]. However, the origin of the angular
broadening of jet-like particle correlations is essentially
kinematic, being determined by the ratio between the mo-
mentum transfer from the medium and the energy of the
escaping particle; hence, the result in Fig. 3 should not
depend strongly on the details of our calculation. We ob-
serve that the ratio q0/µ = 4, corresponding to a boost
of the energy-momentum tensor (1) by approximately one
unit in rapidity ∆η, can account for the tendency in the
preliminary STAR data of Fig. 3. It is consistent with a
space-time picture of Au+Au collisions at RHIC in which
the co-moving frames of the hard parent partons of trigger
particles and of the medium are boosted by one rapidity
unit.

2.3 RHIC: elliptic flow

In general, a hard parton will suffer less energy loss if it
propagates on a trajectory parallel to the flow field. Thus,
for the same medium-induced suppression, the azimuthal
asymmetry at high transverse momentum becomes larger
when the contribution of the collective flow field is in-
creased. To estimate the size of this effect, we consider
a simple two-dimensional model; see [7] for details. The
hard parton is produced at an arbitrary position (x0, y0)
in the transverse plane according to the nuclear overlap.
It propagates in its longitudinally co-moving rest frame in
the transverse direction n = (cos ϕ, sin ϕ), along the tra-
jectory r0(ξ) = (x0 + ξ cos ϕ, y0 + ξ sin ϕ). For simplicity,
we assume that the longitudinally co-moving rest frame
of this hard parton is the longitudinal rest frame of the
medium. Then, there is only a transverse but not a lon-
gitudinal flow component. In this exercise we will work
in the multiple soft scattering approximation [21,22]. For
the BDMPS transport coefficient which includes collective
flow effects, we make the ansatz

q̂(ξ) = qnf + qf |uT(r0(ξ)) · nT|2 . (4)

Here qf and qnf stand for the flow and non-flow com-
ponents to q̂, the two-dimensional vector nT is orthog-
onal to the parton trajectory and projects out the corre-
sponding transverse component of the collective flow field
uT(r0(ξ)). Defining qnf as the time-averaged transport co-
efficient of the dynamically equivalent static scenario [16–
18], the ansatz (4) can account for one of the main effects
of longitudinal expansion, namely the time-dependent de-
crease of the density of scattering centers. In the presence
of collective flow, there is an additional momentum trans-
fer orthogonal to the parton trajectory and hence par-
allel to nT = (− sin ϕ, cos ϕ). Since the transport coeffi-
cient denotes the squared average momentum transfer per
unit path length, this contribution enters quadratically,
|uT(r0(ξ)) · nT|2.

For an exploratory model study, we use a blast-wave
parameterization of the hadronic freeze-out stage of the
collision [28]; see [7] for details. With this input, we calcu-
late the characteristic gluon energy and average transverse
momentum squared for a parton trajectory in a medium
characterized by its density distribution and its collective
flow field. With the ansatz (4) for the BDMPS transport
coefficient, we find

ωc(r0, ϕ) =
∫ ∞

0
dξ ξ q̂(ξ) Ω(r(ξ), ξ) , (5)

(q̂L) (r0, ϕ) =
∫ ∞

0
dξ q̂(ξ) Ω(r(ξ), ξ) . (6)

ωc(r0, ϕ) depends linearly on qnf and on the relative flow
strength qf/qnf . It increases with increasing flow for par-
ton trajectories which are not parallel to the flow field and
shows distortions [7] which, as ∆E ≈ αsωc [13], provide
a first indication of the extent to which parton energy
loss depends on a transverse flow field and affects the az-
imuthal distribution of inclusive hadron spectra.
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Fig. 4. The dependence of elliptic flow v2 and the non-flow
component of the BDMPS transport coefficient qnf on the rel-
ative flow strength qf/qnf , for the case of a nuclear modification
factor RAA = 0.5 in semi-peripheral Au + Au collisions for a
fixed transverse momentum pT = 7 GeV

To estimate the effects of transverse flow, we get
from (5) and (6) the relative suppression of hadronic
spectra due to medium-induced parton energy loss
N(x0, y0, ϕ, pT) = dσmed

dpT

/dσvac

dpT
. For details of the evalu-

ation, see [7]. The results, see Fig. 4, illustrate two quali-
tative effects of transverse flow: First, low-pT elliptic flow
induces an additional contribution to high-pT azimuthal
asymmetry. This effect may reduce significantly the dis-
crepancy of models of parton energy loss [29,30] in ac-
counting for high-pT v2. Second, the presence of collective
flow diminishes strongly the local energy density ε ∝ q

4/3
nf

of the medium required for a nuclear modification factor
RAA of fixed size.

3 Summary

We have performed an exploratory study of the effects of
collective flow on medium-induced radiative energy loss.
Jets at LHC [31] may show a clear η–φ asymmetry. At
RHIC flow can produce asymmetries in associated parti-
cle production for different directions, and a sizable in-
crease of elliptic flow. The determination of densities from
jet quenching studies becomes more involved, as flow may
mimic energy density. Theoretical uncertainties [12] exist:
finite energy corrections, hadronization (which requires pp
and pA data), . . . , but even a negative result would pro-
vide information about the space-time evolution of the
system (e.g. of the coupling between hard production and
flow). Truly quantitative answers require the computation
of this effect within a full hydrodynamical simulation [32].
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